Brownian motion near a partial-slip boundary: A local probe of the no-slip condition
نویسندگان
چکیده
Motivated by experimental evidence of violations of the no-slip boundary condition for liquid flow in micrometer-scale geometries, we propose a simple, complementary experimental technique that has certain advantages over previous studies. Instead of relying on externally induced flow or probe motion, we suggest that colloidal diffusivity near solid surfaces contains signatures of the degree of fluid slip exhibited on those surfaces. To investigate, we calculate the image system for point forces Stokeslets oriented perpendicular and parallel to a surface with a finite slip length, analogous to Blake’s solution for a Stokeslet near a no-slip wall. Notably, the image system for the point source and perpendicular Stokeslet contain the same singularities as Blake’s solution; however, each is distributed along a line with a magnitude that decays exponentially over the slip length. The image system for the parallel Stokeslet involves a larger set of fundamental singularities, whose magnitude does not decay exponentially from the surface. Using these image systems, we determine the wall-induced correction to the diffusivity of a small spherical particle located “far” from the wall. We also calculate the coupled diffusivities between multiple particles near a partially slipping wall. Because, in general, the diffusivity depends on “local” wall conditions, patterned surfaces would allow differential measurements to be obtained within a single experimental cell, eliminating potential cell-to-cell variability encountered in previous experiments. In addition to motivating the proposed experiments, our solutions for point forces and sources near a partial-slip wall will be useful for boundary integral calculations in slip systems. © 2005 American Institute of Physics. DOI: 10.1063/1.2083748
منابع مشابه
Unsteady MHD nonlinear radiative squeezing slip-flow of Casson fluid between parallel disks
Effect of nonlinear thermal radiation on the unsteady magnetohydrodynamic slip flow of Casson fluid between parallel disks in the presence of thermophoresis and Brownian motion effects are investigated numerically. A similarity transformation is employed to reduce the governing partial differential equations into ordinary differential equations. Further, Runge-Kutta and Newton’s methods are ado...
متن کاملEffect of interfaces on the nearby Brownian motion
Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics s...
متن کاملBoundary layer Viscous Flow of Nanofluids and Heat Transfer Over a Nonlinearly Isothermal Stretching Sheet in the Presence of Heat Generation/Absorption and Slip Boundary Conditions
The steady two-dimensional flow of a viscous nanofluid of magnetohydrodynamic (MHD) flow and heattransfer characteristics for the boundary layer flow over a nonlinear stretching sheet is considered. Theflow is caused by a nonlinear stretching sheet with effects of velocity, temperature and concentrationslips. Problem formulation is developed in the pre...
متن کاملBrownian motion as a new probe of wettability.
Understanding wettability is crucial for optimizing oil recovery, semiconductor manufacturing, pharmaceutical industry, and electrowetting. In this letter, we study the effects of wettability on Brownian motion. We consider the cases of a sphere in an unbounded fluid medium, as well as a sphere placed in the vicinity of a plane wall. For the first case, we show the effects of wettability on the...
متن کاملFinite Integral Transform Based Solution of Second Grade Fluid Flow between Two Parallel Plates
The importance of the slip flow over the no-slip condition is widely accepted in microscopic scaled domains with the direct impact on microfluidic and nanofluidic systems. The popular Navier Stoke’s (N-S) flow model is largely utilized with the slip flow phenomenon. In the present study, the finite integral transform scheme along with the shift of variables is implemented to solve the equation ...
متن کامل